目的是对临床文本去识别的自然语言处理(NLP)模型的评估取决于临床注释的可用性,临床注释通常由于隐私问题而受到限制。 NLP沙盒是一种通过采用联合模型到数据的方法来减轻NLP模型缺乏数据和评估框架的方法。这使得无偏见的联合模型评估无需共享多个机构的敏感数据。材料和方法我们利用Synapse协作框架,容器化软件和OpenAPI Generator来构建NLP沙盒(NLPSANDBOX.IO)。我们使用来自三个机构的数据评估了两个最先进的NLP去识别注释模型Philter和Neuroner。我们使用来自外部验证站点的数据进一步验证了模型性能。结果我们通过去识别临床模型评估证明了NLP沙箱的有用性。外部开发人员能够将其模型纳入NLP沙盒模板中,并提供用户体验反馈。讨论我们证明了使用NLP沙箱对临床文本去识别模型进行多站点评估的可行性,而无需共享数据。标准化模型和数据模式可以使模型传输和实现平稳。为了概括NLP沙箱,数据所有者和模型开发人员需要进行工作,以开发合适和标准化的模式,并调整其数据或模型以适合模式。结论NLP沙箱降低了利用临床数据进行NLP模型评估的障碍,并促进了联合会的NLP模型的联合,多站点,无偏见的评估。
translated by 谷歌翻译
数据增强是自然语言处理(NLP)模型的鲁棒性评估的重要组成部分,以及增强他们培训的数据的多样性。在本文中,我们呈现NL-Cogmenter,这是一种新的参与式Python的自然语言增强框架,它支持创建两个转换(对数据的修改)和过滤器(根据特定功能的数据拆分)。我们描述了框架和初始的117个变换和23个过滤器,用于各种自然语言任务。我们通过使用其几个转换来分析流行自然语言模型的鲁棒性来证明NL-Upmenter的功效。基础架构,Datacards和稳健性分析结果在NL-Augmenter存储库上公开可用(\ url {https://github.com/gem-benchmark/nl-augmenter})。
translated by 谷歌翻译
Despite their widespread adoption, neural conversation models have yet to exhibit natural chat capabilities with humans. In this research, we examine user utterances as causes and generated responses as effects, recognizing that changes in a cause should produce a different effect. To further explore this concept, we have compiled and expanded upon a new dataset called CausalDialogue through crowd-sourcing. This dataset includes multiple cause-effect pairs within a directed acyclic graph (DAG) structure. Our analysis reveals that traditional loss functions can struggle to effectively incorporate the DAG structure, leading us to propose a causality-enhanced method called Exponential Maximum Average Treatment Effect (ExMATE) to enhance the impact of causality at the utterance level in training neural conversation models. To evaluate the effectiveness of this approach, we have built a comprehensive benchmark using the CausalDialogue dataset leveraging large-scale pre-trained language models, and have assessed the results through both human and automatic evaluation metrics for coherence, diversity, and agility. Our findings show that current techniques are still unable to effectively address conversational DAGs, and that the ExMATE method can improve the diversity and agility of conventional loss functions while maintaining coherence.
translated by 谷歌翻译
We present a machine-learning framework to accurately characterize morphologies of Active Galactic Nucleus (AGN) host galaxies within $z<1$. We first use PSFGAN to decouple host galaxy light from the central point source, then we invoke the Galaxy Morphology Network (GaMorNet) to estimate whether the host galaxy is disk-dominated, bulge-dominated, or indeterminate. Using optical images from five bands of the HSC Wide Survey, we build models independently in three redshift bins: low $(0<z<0.25)$, medium $(0.25<z<0.5)$, and high $(0.5<z<1.0)$. By first training on a large number of simulated galaxies, then fine-tuning using far fewer classified real galaxies, our framework predicts the actual morphology for $\sim$ $60\%-70\%$ host galaxies from test sets, with a classification precision of $\sim$ $80\%-95\%$, depending on redshift bin. Specifically, our models achieve disk precision of $96\%/82\%/79\%$ and bulge precision of $90\%/90\%/80\%$ (for the 3 redshift bins), at thresholds corresponding to indeterminate fractions of $30\%/43\%/42\%$. The classification precision of our models has a noticeable dependency on host galaxy radius and magnitude. No strong dependency is observed on contrast ratio. Comparing classifications of real AGNs, our models agree well with traditional 2D fitting with GALFIT. The PSFGAN+GaMorNet framework does not depend on the choice of fitting functions or galaxy-related input parameters, runs orders of magnitude faster than GALFIT, and is easily generalizable via transfer learning, making it an ideal tool for studying AGN host galaxy morphology in forthcoming large imaging survey.
translated by 谷歌翻译
A prominent approach to solving combinatorial optimization problems on parallel hardware is Ising machines, i.e., hardware implementations of networks of interacting binary spin variables. Most Ising machines leverage second-order interactions although important classes of optimization problems, such as satisfiability problems, map more seamlessly to Ising networks with higher-order interactions. Here, we demonstrate that higher-order Ising machines can solve satisfiability problems more resource-efficiently in terms of the number of spin variables and their connections when compared to traditional second-order Ising machines. Further, our results show on a benchmark dataset of Boolean \textit{k}-satisfiability problems that higher-order Ising machines implemented with coupled oscillators rapidly find solutions that are better than second-order Ising machines, thus, improving the current state-of-the-art for Ising machines.
translated by 谷歌翻译
Semi-supervised learning methods can train high-accuracy machine learning models with a fraction of the labeled training samples required for traditional supervised learning. Such methods do not typically involve close review of the unlabeled training samples, making them tempting targets for data poisoning attacks. In this paper we investigate the vulnerabilities of semi-supervised learning methods to backdoor data poisoning attacks on the unlabeled samples. We show that simple poisoning attacks that influence the distribution of the poisoned samples' predicted labels are highly effective - achieving an average attack success rate as high as 96.9%. We introduce a generalized attack framework targeting semi-supervised learning methods to better understand and exploit their limitations and to motivate future defense strategies.
translated by 谷歌翻译
Structure-based drug design (SBDD) aims to discover drug candidates by finding molecules (ligands) that bind tightly to a disease-related protein (targets), which is the primary approach to computer-aided drug discovery. Recently, applying deep generative models for three-dimensional (3D) molecular design conditioned on protein pockets to solve SBDD has attracted much attention, but their formulation as probabilistic modeling often leads to unsatisfactory optimization performance. On the other hand, traditional combinatorial optimization methods such as genetic algorithms (GA) have demonstrated state-of-the-art performance in various molecular optimization tasks. However, they do not utilize protein target structure to inform design steps but rely on a random-walk-like exploration, which leads to unstable performance and no knowledge transfer between different tasks despite the similar binding physics. To achieve a more stable and efficient SBDD, we propose Reinforced Genetic Algorithm (RGA) that uses neural models to prioritize the profitable design steps and suppress random-walk behavior. The neural models take the 3D structure of the targets and ligands as inputs and are pre-trained using native complex structures to utilize the knowledge of the shared binding physics from different targets and then fine-tuned during optimization. We conduct thorough empirical studies on optimizing binding affinity to various disease targets and show that RGA outperforms the baselines in terms of docking scores and is more robust to random initializations. The ablation study also indicates that the training on different targets helps improve performance by leveraging the shared underlying physics of the binding processes. The code is available at https://github.com/futianfan/reinforced-genetic-algorithm.
translated by 谷歌翻译
In this short technical note we propose a baseline for decision-aware learning for contextual linear optimization, which solves stochastic linear optimization when cost coefficients can be predicted based on context information. We propose a decision-aware version of predict-then-optimize. We reweigh the prediction error by the decision regret incurred by an (unweighted) pilot estimator of costs to obtain a decision-aware predictor, then optimize with cost predictions from the decision-aware predictor. This method can be motivated as a finite-difference, iterate-independent approximation of the gradients of previously proposed end-to-end learning algorithms; it is also consistent with previously suggested intuition for end-to-end learning. This baseline is computationally easy to implement with readily available reweighted prediction oracles and linear optimization, and can be implemented with convex optimization so long as the prediction error minimization is convex. Empirically, we demonstrate that this approach can lead to improvements over a "predict-then-optimize" framework for settings with misspecified models, and is competitive with other end-to-end approaches. Therefore, due to its simplicity and ease of use, we suggest it as a simple baseline for end-to-end and decision-aware learning.
translated by 谷歌翻译
PROteolysis TArgeting Chimeras (PROTACs) are an emerging therapeutic modality for degrading a protein of interest (POI) by marking it for degradation by the proteasome. Recent developments in artificial intelligence (AI) suggest that deep generative models can assist with the de novo design of molecules with desired properties, and their application to PROTAC design remains largely unexplored. We show that a graph-based generative model can be used to propose novel PROTAC-like structures from empty graphs. Our model can be guided towards the generation of large molecules (30--140 heavy atoms) predicted to degrade a POI through policy-gradient reinforcement learning (RL). Rewards during RL are applied using a boosted tree surrogate model that predicts a molecule's degradation potential for each POI. Using this approach, we steer the generative model towards compounds with higher likelihoods of predicted degradation activity. Despite being trained on sparse public data, the generative model proposes molecules with substructures found in known degraders. After fine-tuning, predicted activity against a challenging POI increases from 50% to >80% with near-perfect chemical validity for sampled compounds, suggesting this is a promising approach for the optimization of large, PROTAC-like molecules for targeted protein degradation.
translated by 谷歌翻译
DeepMind的游戏理论与多代理团队研究多学科学习的几个方面,从计算近似值到游戏理论中的基本概念,再到在富裕的空间环境中模拟社会困境,并在困难的团队协调任务中培训3-D类人动物。我们小组的一个签名目的是使用DeepMind在DeepMind中提供的资源和专业知识,以深入强化学习来探索复杂环境中的多代理系统,并使用这些基准来提高我们的理解。在这里,我们总结了我们团队的最新工作,并提出了一种分类法,我们认为这重点介绍了多代理研究中许多重要的开放挑战。
translated by 谷歌翻译